
AAS 98-001

TOPEWPOSIEDON AUTONOMOUS MANEUVER EXPERIMENT
(TAME) IN-FLIGHT EXECUTION

T. Kia, J . Mellstrom, A. Klumpp, H.S. Lin, P. Sanatar, K. Shen, and P. Vaze'; M. Nachman"

Autonomous spacecraft are becoming increasingly important for fu ture
space missions. Missions will continue to become more ambitious scien-
tifically, and will demand more autonomy to accomplish complex tasks in
uncertain environments and in close proximity to celestial bodies. Af-
fordability is now an additional primary driver. The call is for smaller mis-
sions with greatly reduced ground control and operation. Spacecraft with
highly autonomous, goal-directed systems are required. We believe that
autonomy, in addition to reducing mission operations costs, will enable
science objectives not currently possible. Autonomous maneuver plan-
ning and implementation is a key to future missions.

The TOPEWPOSIEDON Autonomous Maneuver Experiment (TAME) is
an experiment to provide the necessary algorithms for planning and exe-
cuting attitude maneuvers and a thrusting Orbital Maintenance Maneuver
(0") autonomously. TAME'S main module is the planner, an engine
that, along with its auxiliary modules and a database, will reside on an
existing satellite processor. The database contains certain satellite and
orbit constants, as well as tables of mission constraints. Upon receiving
an OMM command, the planner requests up-to-date propulsion data from
the satellite's main On-Board Computer (OBC), and then designs an at-
titude maneuver that does not violate any constraint, geometric, power, or
thermal. Another module, the sequence generator, incorporates the
generated path into an OMM sequence that avoids violating other types
of constraints, such as the timing and order of commands. The resulting
command sequence, which includes commands for reconfiguring and
conditioning the satellite and its components, is transmitted to the OBC
for execution.

This paper describes the planning and execution phases of the experi-
ment. The paper presents results obtained from t h e flight experiment,
and shares lessons learned. TAME was executed, in flight, for the first
time November 1997. During the first flight, TAME planned a violation-
free maneuver and generated an executable sequence. The second
time it will, in addition, transfer t h e generated sequence to the OBC, but
the sequence will not be executed. The third and the final time, a normal
OMM will be planned, transferred to the OBC, and executed. The re-
maining two flight executions are planned for the spring of 1998.

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91 109.

Orbital Sciences Corporation, 20301 Century Boulevard, Germantown, Maryland 20874.
1.

1

INTRODUCTION

A higher lev,el of spacecraft autonomy is becoming increasingly important in planning fu-
ture space missions . Missions will continue to become more ambitious, scientifically and techni-
cally, and will demand more autonomy to accomplish complex tasks in uncertain environments
and in close proximity to celestial bodies. Affordability is now an additional primary driver of
autonomous missions. Sponsors are calling for smaller missions with greatly reduced ground
control and operation. Spacecraft with highly autonomous, goal directed systems are required to
meet these new challenges. In addition to reducing the mission operations cost, autonomous
systems will enable science objectives not possible with current spacecraft architectural designs.
Autonomous maneuver planning and implementation is a key technology for future missions.

This paper describes the software design and in-flight implementation of the
TOPEX/POSEIDON Autonomous Maneuver E~periment~'~ (TAME) . It describes TAME'S archi-
tecture, its primary module (the planner), associated software, and t h e results of the first of three
planned flight experiments. The three experiments will provide proof-of-concept technology for an
important area of on-board autonomy.

TAME provides the algorithms necessary for autonomously planning attitude maneuvers
that execute an Orbital Maintenance Maneuver (0") without violating constraints. An OMM is
accomplished by pointing the spacecraft thruster in the direction of t h e requested velocity incre-
ment (AV), and thrusting until the requested AV is imparted. In the TOPEX case, the velocity in-
crement is always imparted in the direction of the current orbital velocity vector, to correct for drag.
Therefore AV direction is never commanded.

The planner and its internal database resides on an existing satellite processor, along
with several auxiliary modules some of which have their own databases. The databases contain
certain satellite and orbit constants as well as tables of mission constraints. Upon receiving a
maneuver AV and other data from ground commands, TAME requests tank pressures from the
satellite's On-Board Computer (OBC). TAME uses the AV and tank pressures for computing burn
duration. The planner then generates a maneuver plan for turning from cruise attitude to burn
attitude and back, while avoiding violations of geometric, power, and thermal constraints en route.
The sequence generator, merges the maneuver plan with predefined OMM templates, yielding an
OMM sequence that avoids violations of other types of constraints, such as the timing and order
of commands. The OMM sequence, which includes the commands to reconfigure and to condi-
tion the satellite and its components, is transferred to the OBC for execution.

This technology demonstration is providing data to perform costlbenefit analysis for
trades between flight- and ground-based spacecraft mission operations. It is also providing ap-
proaches for new paradigms in system architecture, ground commanding, and test and verifica-
tion that are necessary for designing highly autonomous event-driven flight systems.

TOPEWPOSEIDON MISSION

The TOPEX/Poseidon Satellite, herein referred to as TOPEX (Ocean Topology Experi-
ment) was launched on August 10, 1992, from the Kourou Space Center in French Guyana. The
satellite was launched into a nominal circular orbit with an altitude of 1336 Km and an inclination
of 66 degrees. The TOPEX is a remote $ensing mission with the primary science objective of
providing sea surface altimetry from space . The TOPEX/Poseidon program is jointly sponsored
by The National Aeronautics and Space Administration (NASA) and Centre National d'Etudes
Spatiales (CNES). This joint U.S./French mission combines each country's space ocean research
missions. The Jet Propulsion Laboratory (JPL) manages the TOPEX mission for the NASA office
of Space Sciences Application. JPL is also responsible for the day to day operation of the satel-
lite. The Toulouse Space Laboratory manages the Poseidon for CNES. TOPEX was slated for a

2

prime mission of three years, which was completed in September 1995. NASA has approved a
three years extension to the mission.

The primary science objective of the TOPEX satellite is to provide highly accurate meas-
urements of the sea surface elevation over all of the ocean basins. The primary science require-
ment is to provide geocentric measurement of the global ocean sea level accurate to * 14 cm with
a precision of If: 2.4 cm along track. These requirements necessitated a frozen orbit that provides
a fixed ground track every 10 sidereal days (127 orbit^)^. To maintain the frozen orbit, t h e satellite
occasionally performs a small thrusting maneuver referred to as an Orbit Maintenance Maneuver
(0") or a burn.

TAME OBJECTIVE

An OMM consists of three phases: a planning phase, an implementation phase, and an
execution phase. In the planning phase, the spacecraft orbit is determined, and t h e required ve-
locity correction (the maneuver AV) is computed. In the implementation phase, t h e maneuver AV
is converted to a sequence of low-level commands (an OMM sequence), which are loaded into a
flight computer. After the OMM sequence is verified, a proceed command is issued to initiate the
execution phase. Traditionally, the first two phases are carried out on the ground. TAME's objec-
tive was to develop capabilities for carrying out the implementation phase autonomously, in the
flight computer.

In a fully autonomous approach, all three phases would be carried out in flight without any
ground intervention. Although technically feasible for most modern satellites, this level of auton-
omy was deemed as inappropriate for TAME. TOPEX flight computers, the OBC and the 1750A,
simply do not have sufficient unused capacity to support completely autonomous maneuver func-
tions. Since t h e execution phase of an OMM has long been autonomous, it was decided that the
next logical step would be to convert the implementation phase to an autonomous operation.
With TAME, t h e planning phase remains a ground activity.

Figure 1 shows the TAME process. The planning phase is carried out on the ground by a
navigation team; the resulting maneuver AV and other data are uplinked to the spacecraft. The
implementation phase is carried out in flight; the resulting OMM sequence is downlinked to the
ground for verification and to the OBC for execution. The execution phase is carried out in flight
following receipt of a command to proceed.

OMM s e q u e n c e

Maneuver Implementation - OBC Flight Computer 1750A Flight Computer
Maneuver Execution

Maneuver AV t I OMM S e q u e n c e
Other data command

Maneuver Planning
Topex Ground System

Figure 1. TOPEWPoseidon Autonomous Maneuver process

TAME ARCHITECTURE

Figure 2 shows TAME's modular architecture. In this architecture, the OMM sequence is
similar to a ground-generated OMM sequence. Thus the OBC utilizes existing maneuver routines
to execute the sequence.

At the heart of the process is the planner. The planner processes OMM requests and
generates t h e OMM sequence for execution by the OBC. Inputs to the planner are burn, window,
search, and turn parameters. Maneuver AV is among the burn parameters. The propulsion
model computes burn duration using maneuver AV from the planner and tank pressures from the
OBC. Other inputs and other interfaces between modules are described later.

.
Burn parms

Search parms
Window parms 1, Planner Command Sequence 1, OMM

Constraint table

Constraint checker

Translator Generator sequence

1 Default parameters OMM templates I
Physical Models

Eclipse model I I Maneuver '" ~ Power model
. Propulsion model

I Tank

Burn duration
1

Solar array model
Thermal model I

I
I
I

4
pressures

Figure 2. TAME Architecture

Communication between Flight Computers

Communication between OBC and 1750A provided another challenge to the TAME de-
sign.

Figure 3 graphically shows t h e proposed data transfer architecture. Communication is
based on the existing TOPEX command and telemetry architecture. The 1750A output data is
normally slated for transfer to ground via the Central Unit (C.U.), as part of the spacecraft teleme-
try. The OBC also has access to the complete telemetry via the C.U. For TAME, 1750A teleme:
try is modified by embedding spacecraft commands, to be executed by the OBC, in place of nor-
mal telemetry. In this experiment, the OBC software modification allows the OBC to capture, in-
terpret, and verify the spacecraft commands from the 1750A. After extracting these spacecraft
commands from 1750A telemetry, the OBC stores the TAME commands in the Absolute Time
Command Buffer (ATCB) for execution at a later time. This completes the TAME maneuver im-
plementation phase. TAME does not change the maneuver execution phase.

4

TLM TO CMDS FROM TOPEX OBC

CENTRAL -- OBC TLM TO G N D

UNIT
1750 8 SIC TLM

G N D CMDS

c M ~

1 EXECUTIVE TASK T L M R U E F E R I

i__ij """""

"""""

ABSOLUTE TIME COMMAND TASK

- .sEQ!CFlcE - - """""_ """""_ """""_
"""""_ """""_ """""_
T.4hEMANWYEE
""""" CMD SEQUENCE- """""_

I I J

TOPEX GROUND
SYSTEM

Figure 3. OBC-1750A data transfer architecture

1750A SOFTWARE ARCHITECTURE

For t h e purposes of the experiment, the 1750A computer in which TAME resides acts as
a co-processor to t h e OBC. The 1750A performs all the calculations for planning the requested
maneuver and generates a complete sequence to implement the planned maneuver. The OBC
receives and stores the maneuver sequence of absolute timed commands from the 1750A. The
sequence is then interpreted and executed.

The software on the 1750A computer is substantially original. While it was developed
specifically for the TAME experiment, the underlying software architecture and command and te-
lemetry interfaces were inherited from t h e pre-TAME application. The software on the OBC, on
the other hand, is substantially unchanged. A patch was made to the existing software to ac-
commodate an interactive interface with the 1750A, to receive and process a sequence generated
by the 1750A, and to allow detailed ground control over execution of the autonomously generated
sequence.

The inherited architecture of the 1750A software consists of a main program that spawns
two processes referred to as the high- and low-priority tasks (see Figure 5 on page 7).

Interacting Modules

Figure 4 shows the principal TAME modules and the data that are transmitted from one
module to another. Functions of the principal modules are:

5

w

I-

I - T i I
I - t ‘ F w t s

D

Figure 4. Flight Software Modules and Data Flow

The planner searches for a violation-free attitude profile that turns the spacecraft from its
initial attitude to the burn attitude and, after the burn, returns the spacecraft to the attitude
it would have at that time had no burn been performed. Violations that would cause an
attitude profile to be rejected are pointing the spacecraft’s Z-axis too far from nadir,

6

pointing one of two trackers too close to the sun , overheating, and exceeding the battery's
discharge limit. The initial and final attitudes are on a yaw-steering profile, which is based
on the instantaneous geometry of the spacecraft, Earth, and S u n . As an aid in avoiding
violations, the attitude profile includes two intermediate attitudes, A and B (see Figure 6
on page 9). Attitude A is along the path from the initial attitude to the burn attitude, and B
is along the return path following the burn. The turns account for turn-rate limits, settling
times, and spacecraft dynamic behavior. The planner supplies the command translator
and sequence generator the starting and ending attitude for each turn. Attitudes are sup-
plied as quaternions. Thus, for the four turns, the planner supplies five quaternions. The
attitude during the burn is constant, so no additional quaternions are required to define
the entire attitude profile.

The command translator uses the quaternions supplied by the planner to compute a
sequence of bias quaternions to be used by the sequence generator. The bias quater-
nions interpolate between the planner-supplied quaternions, thereby producing a se-
quence of uniformly spaced intermediate attitude points along any turn whose turn angle
exceeds a lower limit.

The sequence generator merges t h e attitude profile supplied by the planner and the
command translator into a predefined sequence for preparing spacecraft hardware for the
turning and thrusting maneuvers, and for restoring the coasting configuration. The prede-
fined sequence involves pre-maneuver conditioning, such as starting catalyst-bed heat-
ers, opening fuel latch valves, enabling propulsion module electronics, selecting thruster
configuration, changing failure-detection limits, and others.

The OBC carries out the maneuver sequence produced by the sequence generator.

The physical models supply several types of data used for defining the planned attitude
profile. Pressures in tanks A and B, and AV (the velocity increment to be imparted), are
inputs to the propulsion model for computing burn duration. In fact, t h e planner requests
the tank pressures from the OBC, and writes them in its specification file; the propulsion
module reads the pressures from the planner spec.

The command handler receives commands from the ground and from t h e OBC, and
routes the commands to the designated recipient. The command handler transmits to the
ground via the telemetry handler an echo of every command received from the ground,
and a copy of every command received from the OBC.

The telemetry handler packs commands, status data, the maneuver sequence, and
other results in a packing buffer, and transmits the buffer to the ground. It also transmits
commands and the maneuver sequence to the OBC. Telemetry data comprises every
type: string, boolean, integer, float, vector, matrix, and quaternion.

lntermodule Communication

Objects communicate with one another by means of flags and modes. Each flag or mode
belongs to a single object, but each can be read by any object. The command handler commonly
sets flags (but not modes) belonging to other objects; other objects rarely if ever set flags or other
variables that do not belong to them.

Interacting Real-Time Processes

TAME comprises five real-time processes, as shown in

7

Figure 5. The processes are (1) a main program, (2) a low-priority task, (3) a high-priority
task, (4) a command handler, and (5) a telemetry handler.

Figure 5. Flight Software's Real-Time Processes

The main program starts the two tasks, and then becomes inactive. The tasks cycle in-
definitely, calling procedures in other objects but never being called. The command and telemetry
handlers each provide one procedure that is driven by an interrupt stream (Commandlnterface
and Telemetrylnterface), and numerous subprograms that are called from subprograms in the two
tasks. Procedures Commandlnterface and Telemetrylnterface are independent of one another.
The four processes that remain active are described in more detail in the following sections on the
low- and high priority tasks.

The purpose of the low-priority task, is to execute compute-bound modules in the back-
ground, while the high-priority task services the Startlnit command and downlink requests, which
require immediate attention.

Following initialization, the task enters an endless loop, polling execution flags. The value
of each execution flag, TRUE or FALSE, determines whether the task calls or does not call the
corresponding module, i.e., the planner, command translator, or sequence generator.

Each execution flag is set only by procedure Stepcompleted (see

Figure 5). Each is initialized in its declaration to FALSE, reset to FALSE by the owning
module's initialization procedure, and reset to FALSE by the procedure that is called to initiate the
corresponding step.

The low-priority task's endless loop is divided into six steps. As the figure shows, the six
steps are (1) Initialization, (2) planner execution, (3) command translator execution, (4) sequence
generator telemetry to ground, (5) sequence generator midway, and (6) sequence generator te-
lemetry to OBC. The code permits step allocations to be changed easily. The term "step" always
refers to a bounded process in the low-priority task, never to one in the high-priority task.

Steps are controlled by MulfiStep commands issued from the ground. Each of the steps
ends with a call to the Stepcompleted procedure, as the figure shows. The Stepcompleted pro-
cedure, part of the STATUS object, receives (1) error status from each subprogram completing a
step, (2) a further-steps-authorized number from the initialization process or from any Multistep
command, and (3) any Startlnit command from the ground. On the basis of these data, Step-
Completed sets or omits setting any execution flag for the succeeding step. On the final step,
there is no execution flag for a succeeding step. Nontheless, the StepCompleted procedure re-
t u r n s control to t h e caller, so that the caller can return control to the low-priority task, which then
loops endlessly waiting for a Startlnit command. In any case, StepCompleted returns an action
directive to the caller.

The action directive that Stepcompleted returns can be any one of three: initialize, re-
peat, or proceed. The initialize directive is returned in response to a Startlnit command, which
can be issued while any step is executing or while the low-priority loop is idling in the Startlnit pro-
cedure. The repeat directive is returned only when the first of the three sequence-generator steps
has executed. The continue directive is returned whenever a step completes without error and
further step(s) are authorized.

The content of the action directive usually does not affect the response of the recipient.
The low-priority task continues its polling loop regardless of directive content. The planner and
command translator return control to the low-priority task regardless of directive content. Only the
sequence generator responds according to directive content. Upon completing its first step, di-
rective content causes the sequence generator to (1) repeat the step, (2) return control to the low-
priority task in response to a Startlnit command, or (3) proceed to its next (second) step. Upon
completing its second step, the sequence generator's responses are (2) and (3) above. Upon
completing its third step, the sequence generator returns control to the low-priority task regardless
of directive content, the same as the planner and command translator.

9

The purpose of the high-priority task, is to service the Startlnit command and downlink
requests, which require immediate attention, while the low-priority task executes compute-bound
modules in the background.

Following initialization at power-up, the task cycles endlessly polling for the Startlnit flag
and the presence of a queued downlink request. The Startlnit flag can be set by the command
handler in response to a Startlnit command. Downlink requests are placed in the queue when the
data for downlinking becomes available.

PLANNER IMPLEMENTATION

As mentioned earlier, the planner supplies five quaternions, shown in Figure 6 , defining
spacecraft attitude at the start of the OMM sequence, at inermediate point A, during the burn, at
intermediate point 6, and at the finish of the OMM sequence. Each of the five quaternions defines
spacecraft attitude with respect to the Orbit Reference Frame (ORF). The origin of the ORF is in
t h e spacecraft, and the ORF rotates around the center of the Earth with the Z (yaw) axis always
along the nadir, the X (roll) axis forward, the Y (pitch) axis along the negative of the orbital angular
momentum. The quaternions for attitudes A and B are identical, making spacecraft attitude at A
and B the same with respect to the ORF, but not t h e same inertially because of ORF rotation.

The search has four dimensions. These are the epoch of the burn centroid and the three
Euler angles that define intermediate attitudes A and B. Burn epoch is the time of the midpoint of
the burn with respect to the 6 AM epoch of the orbit, expressed in seconds. The 6 AM epoch is
the time when the center of the S u n is in the spacecraft's local horizontal plane, and rising due to
spacecraft orbital motion.

The search for a violation-free path is performed by procedure planner, one of 19 subpro-
grams (procedures and functions) in the planner module. Additional subprograms are nested in a
few of the 19. The search process, including interactions of procedure planner with the other
subprograms, can be described in terms of procedure planner's code. The planner search
searches for a violation-free attitude path using five nested loops, as follows:

10

Nadir-constraint
cone /
(exaggeratedv

PI

Figure 6. Attitude Profile and Intermediate Figure 7. Search Geometry and Euler Angles
Attitudes A and B Phi, Eta Psi

11

The two outermost loops search in the time dimension. The outer loop selects time win-
dows within which burn epochs are permissible. The next nested loop tries burn epochs within
the selected window. The three innermost loops set the Euler angles Phi, Eta, and Psi that define
the intermediate attitudes A and B with respect to the ORF (see Figure 7).

All parameters used in the search are loaded by ground commands. Up to five windows
and associated search parameters are received by procedure SetWndwParms. The stepsze for
searching within a window and the three Euler angles are received by procedure SetSrchParms.
Burn parameters, such as AV, are received by procedure SetBurnParms. Turn parameters, such
as turn rates and times, are received by procedure SetTurnParms.

The following paragraphs describe a few of the planner's other subprograms.

Given the quaternion at intermediate attitude A, SlewTolnfo computes its epoch, and the
epoch and quaternion at the start of the tu rn that departs from the yaw steering profile. It does so
in two steps. In t h e first step, SlewTolnfo computes the epoch of arrival at intermediate attitude A
by calling Turntime, which returns the duration required to tu rn from intermediate attitude A to the
burn attitude. The desired epoch is obtained by subtracting t h e tu rn duration and settling time(s)
from the epoch of arrival at the burn attitude. SlewTolnfo gets the epoch of departure from the
yaw steering profile, and the corresponding quaternion, by calling Merge, and subtracting the turn
duration from epoch of arrival at intermediate attitude A.

Called by SlewTolno, SlewFromlnfo, and Merge, Turntime computes the time required to
turn from attitude Q1 to Q2.

When called by SlewTolnfo, Merge computes the quaternion of departure from the yaw
steering profile, and the duration required to tu rn from the yaw steering profile to intermediate at-
titude A. When called by SlewFromlnfo, Merge computes the quaternion of arrival at the yaw
steering profile, and t h e duration required to turn from intermediate attitude B to the yaw steering
profile. Merge searches for the epoch numerically. It uses two search processes, as follows:
The first search process depends upon whether Merge was called by SlewToInfo or SlewFro-
mlnfo. I f called by SlewTolnfo, Merge starts with intermediate attitude A and the epoch of arrival
at intermediate attitude A. Merge then steps backward from that epoch, computing on each step
the corresponding attitude of the yaw steering profile, and calling Turntime. Merge stops stepping
when the turn duration returned by Turntime is less than the available time. I f called by SlewFro-
mlnfo, Merge starts with intermediate attitude B and the epoch of departure from intermediate
attitude B. Merge then steps forward from that epoch, computing on each step the corresponding
attitude of the yaw steering profile, and calling Turntime. Merge stops stepping when the duration
returned by Turntime is less than the available time. The second process is a binary search to
refine the epoch of departure from or arrival at the the yaw steering profile, depending upon
whether Merge was called by SlewTolnfo or SlewFromlnfo. In either case, Merge computes the
corresponding quaternion, which it returns to t h e caller.

Given t h e quaternion at intermediate attitude B, SlewFrornlnfo computes its epoch, and
the epoch and quaternion at the finish of the turn that arrives at the yaw steering profile. It does
so in two steps. In the first step, SlewFromlnfo computes the epoch of departure from intermedi-
ate attitude B by calling Turntime, which returns the duration required to turn from the burn atti-
tude to intermediate attitude B. The desired epoch is obtained by adding the turn duration and
settling time(s) to the epoch of departure from the burn attitude. SlewFromlnfo gets the epoch of
arrival at the yaw steering profile, and the corresponding quaternion, by calling Merge, and adding
the turn duration to the epoch of departure from intermediate attitude B.

CornpufeEpochsGlobal, a procedure neted in procedure planner, computes global ep-
ochs and durations not already computed.

12

AnalyzePath analyzes the path or attitude profile, from start to finish, in order to detect
violations of any one of the constraints. Analyzepath does the analysis in two steps. In the first
step, it sets up a table of epoch points that cover the entire sequence, starting with departure from
the yaw steering profile at the beginning of t h e first turn, and ending at the end of the settling time
following arrival at the yaw steering profile at the end of the last turn. A minimum spacing sepa-
rates consecutive epoch points, and a maximum number of epoch points are allowed in the dura-
tion of any one tu rn or coast duration. In the second step, Analyzepath calls AnalyzePoint for
each epoch point in the table. AnalyzePoint analyzes the point supplied by Analyzepath, in order
to detect violations of any one of the constraints. DownlinkSrchParmsAndesolts is called re-
peatedly during the search process and once at the conclusion of the search process. When
called during t h e search process,

The command translator uses the quaternions supplied by t h e planner to compute a se-
quence of bias quaternions to be used by t h e sequence generator. The bias quaternions interpo-
late between the planner-supplied quaternions, thereby producing a sequence of uniformly spaced
intermediate attitude points along any turn whose turn angle exceeds a lower limit.

The method for computing the bias quaternions is chosen to match peculiarities of the
Topex steering algorithms. Topex yaw steering is distinct from roll and pitch steering. The bias
quaternions are intended to drive roll and pitch axes but not the yaw axis.

The bias quaternions are computed by interpolating only the roll and pitch Euler angles.
The algorithm is:

1. For the roll and pitch axes, compute an intermediate Euler angle as initial + (final - initial) *

i / n, where n is the number of steps, i is the step number in the range 1 .. n, and "initial"
and "final" refer to t h e initial and final roll or pitch Euler angles. Thus, for each of the two
axes, the first intermediate Euler angle is one step removed from the initial Euler angle,
and t h e last intermediate Euler angle is identical to the final Euler angle.

2. For t h e yaw axis, set the intermediate Euler angle to zero.

3. Extract the bias quaternion from the product of the two direction cosine matrices that cor-
respond to the pitch and roll intermediate Euler angles.

For generality, the code includes in the matrix product the identity matrix corresponding to
the zero-value yaw Euler angle. This algorithm interpolates poorly when the pitch and roll angles
are small compared to the yaw angle.

SEQUENCE GENERATOR MODULE

The sequence generator produces a sequence of stored commands (Maneuver Se-
quence) required to perform an OMM, similar to the sequence generated using ground-based
software tools. SEQGEN merges the attitude profile supplied by the planner and the command
translator into a predefined sequence for preparing spacecraft hardware and software for the
turning and thrusting maneuvers, and for restoring the coasting configuration.

The architecture of the SEQGEN is described in Figure 8. The predefined sequence in-
volves pre-maneuver conditioning, such as starting catalyst-bed heaters, opening fuel latch
valves, enabling propulsion module electronics, selecting thruster configuration, changing failure-
detection limits, and others.

The SEQGEN has three primary software interfaces, the command translator, the data-
base and t h e telemetry formatting module. To simplify the design, the SEQGEN uses 6 hard-
coded templates, which describe the pre and post maneuver commands. These templates define

13

the command and the relative time interval to the next command but do not define the absolute
time. This allows the TAME software to produce a maneuver sequence for any desired time
frame. The remaining inputs for the sequence are retrieved from t h e common data area. These
inputs may have been uplinked from the ground or calculated by another module. The SEQGEN
must sort the inputs from the CMD Translator based upon time and integrate them into the prede-
fined sequence. The integration process also involves checking and reorganizing the command
sequence based upon Spacecraft constraints. The outputs of the SEQGEN consist of data that
describe a single OBC command and timetag. These data are transferred to t h e Telemetry For-
matting module for transfer to the OBC and to the ground.

+++++++++++***+++++*++***+**++*+*+*+***+++++++*++++****++++*++**+++*+++***++*++*+++*+*++++**+++++*++

14

PLANNER
1

f I

15

Figure 8. Sequence Generator Data Flow

The sequence generator merges the attitude profile supplied by the planner and the
command translator into a predefined sequence for preparing spacecraft hardware for the turning
and thrusting maneuvers, and for restoring the coasting configuration. The predefined sequence
involves pre-maneuver conditioning, such as starting catalyst-bed heaters, opening fuel latch
valves, enabling propulsion module electronics, selecting thruster configuration, changing failure-
detection limits, and others. The sequence generator comprises two major parts, the sequence
generator procedure and the compute sequence procedure.

Procedure SeqGenerator controls the steps of the low-priority task whereby the se-
quence is repeatedly generated and transmitted to the ground and then, when a new Multistep
command is received that authorizes further step(s), generating the sequence for transmission to
the OBC. In this role, SeqGenerator is an interface between the low-priority task and the se-
quence generator, and also an interface between the sequence generator and the Stepcompleted
procedure.

The procedure consists of the following parts:

1. In an infinite loop, SeqGenerator repeatedly sets the destination to be the ground and
calls procedure ComputeSequence, and then procedure Stepcompleted with a FALSE
error flag (signifying no error), until Stepcompleted returns an action directive other than
repeat.

2 . SeqGenerator tests for authorization to telemeter the sequence to the OBC by calling
Stepcompleted with a FALSE error flag. I f Stepcompleted returns the action directive
initialize, SeqGenerator returns control to the low-priority task rather than recomputing the
sequence for transfer to the OBC.

3. SeqGenerator sets the destination to be the OBC, and calls ComputeSequence and then
Stepcompleted with the resulting error flag. When Stepcompleted returns control to Se-
qGenerator, SeqGenerator returns control to the low-priority task to enable the task to run
another case if and when a Startlnit command is received from the ground.

TELEMETRY HANDLER ORGANIZATION

Figure 9 shows how the major components of the telemetry handler are organized. The
telemetry handler provides two telemetry channels, one for subprograms of TAME'S low-priority
task and the other for subprograms of the high-priority task. Thus subprograms from both tasks
vie for services by t h e telemetry handler concurrently and independently.

16

I
I

I

I ' I

I I

I
I

I b
5

I
I .

I m w '
I 'I

I
1

Figure 9. Telemetry Handler Organization

The two SetDestination procedures give one channel at a time access to the packing pro-
cedures. The packing procedures write telemetry data from the current channel's subprograms
into a buffer (not shown in the figure). Procedure Packcompleted notifies procedure Telemetry-
Interface that the buffer just packed is ready to be transmitted. Packcompleted also participates
in buffer and channel management. Procedure Telemetrylnterface reads the data from the buffer,

17

and transmits all data to both the OBC and the ground. Procedure Telemetrylnterface has no
control connection with other components of the telemetry handler. It is invoked by a regular
stream of telemetry interrupts. This is the telemetry handler's only interrupt-driven subprogram.

MULTISTEP COMMANDS

The Multistep concept, generalizing the single-step concept, is to uplink one or more
commands authorizing TAME to take a designated number of fur ther steps. The Multistep com-
mand includes a single integer whose value designates the number of steps that TAME is author-
ized to take following completion of the step underway or already completed. I f the value is zero,
TAME idles until it receives a new Multistep command or a Startlnit. I f a Multistep command is
received and its value is greater than zero, TAME takes the number of steps designated and then
returns to idling. Thus t h e value can always be chosen to authorize TAME to complete all proc-
essing. The default for the number of steps authorized is chosen to enable TAME to run to com-
pletion. Its value is five, one less than the total number of steps that TAME can take, because it
applies after the initialization step has been taken. The default is first set when TAME is first ini-
tialized, and it is restored each time TAME is reinitialized. Thus it is never necessary to uplink a
Multistep command if it is intended for TAME to run to completion.

EXPERIMENT TEST AND VERIFICATION PLAN

The integration and test of the TAME system was driven by, the design and implementa-
tion process. Therefore, before discussing the I&T process in detail, this section will discuss the
TAME design and implementation process and how it influenced t h e test process.

At a very high level the development can be broken down into 4 elements. These are

0 TAME Algorithm Development,

TAME Flight SW Implementation,

Embedded System (1750A) Development, and

0 OBC S W Development.

Each step is discussed in more detail below.

The TAME function, planning a constraint free attitude trajectory and creating a maneuver
sequence, was originally developed in two environments. It was developed partially in MATLAB
and partially in FORTRAN. FORTRAN was used wherever existing functions were deemed suit-
able for reuse. This occurred, for example, in the case of orbit models. New functions were im-
plemented in MATLAB.

For the flight implementation, the algorithms were transcribed to ADA and tested on a
VAX workstation. TAME Functional testing was also done in the MATLAB environment as part of
the algorithm development process.

The software on the embedded system is a synthesis of code from two sources. The
fundamental software architecture, interprocess communications, and external interfaces are
substantially inherited. These functions are culled from the previous application code and tested
in a stand-alone fashion on a 1750 target computer. The second component is the TAME Flight
SW. This software, which is based on the MATLAB and FORTRAN code discussed earlier, is
integrated with the inherited software and ported to the 1750.

Figure 10 depicts the TAME test environment.

18

At each step in the development, realistic test cases are used to verify the functionality of
the planning software. These test cases fall into two categories. The first of which emulate previ-
ously conducted 0”’s by restricting the planning degrees of freedom. The spacecraft attitude is
required to stay nadir pointed until just before the burn and the only free variable is the burn ep-
och. In these test cases, the actual spacecraft telemetry is the “truth set” against which the TAME
planning function is evaluated. The other class of functional test cases are those which allow off
nadir pointing during the turn to the burn attitude. These test cases take advantage of the TAME
attitude planning capability to “walk around” a constraint. The functionality and performance of the
TAME S W in these cases is verified by analysis. These test cases were followed by project ap-
proved acceptance test cases. Table 1 summarizes the steps taken during the formal phase of
the TAME tests.

FLIGHT DEMONSTRATIONS

Three in-flight tests have been planned. These tests were planned to be executed incre-
mentally, with increasing complexity, in order to reduce the risk to the satellite and to increase
confidence.

0 Test number one involved loading of the 1750A software and running multiple solutions.
This was executed successfully on November 17, 1997. Two OMM sequences were
generated and telemetered to ground. Both sequences were for the same AV request,
but one produced a TOPEX type solution, maintaining nadir pointing throughout the ma-
neuver; while the second solution demonstrated TAME’S capability of going off-nadir to
achieve its objectives. Both generated solutions were then tested on t h e testbed to en-
sure validity. The solution was not transferred to the OBC.

0 Test number two will include the OBC patch and will transfer the generated sequence to
the satellite absolute time command buffer (ATCB). However, there are no plans to fol-
low through and fire the thrusters. This process allows schedule flexibility, as
TOPEWPoseidon maintains strict requirements on OMM executions periods.

0 Finally, Test number three, will go through and complete the whole end-to-end process.

We are currently awaiting project’s approval for execution of the later two tests.

19

TAME 1750/OBC

I&T

Figure 10. TAME Test Environment

RISK MITIGATION

1

2

3

4

8

MATLAB VAX 1 7 5 0 A

OMM7: T X X X

1 i I

OMM8: T X X

I I
om10 : 5 O X X
O f f - N a d i r

X G E - p E c
t ion

X F l t . D a t a

F l t . D a t a

X F l t . D a t a

F l t . D a t a

F l t . D a t a

X T e s t B e d

~

T e s t B e d

In-Fl ight

1 , 2 &
3

1

20

9 Test B e d X Accep-
tance
Tests

Table 1. TAME test cases.

Figure 11 thru show some of the results of the first flight experiment.

Roll and Pitch of SC During Maneuver
1.5 I I I I I t I I , -

1 1 roll

-0.5 1 I I I I I I I I I
-350 -300 -250 -200 -150 -100 -50 0 50 100 150

Orbit Angle in Degrees

Yaw of SC During Maneuver
20. I I I I I I I 1 I

0 - maneuver yaw -

-" z -20 - nominal yaw -
2
0" -40-

a, -60-

L
cn -
S ._ - -
0,

2 -80 -
. - , , , .

,
, . , . , . , ,

-100- , , ' . ,
/

. . ,
I I I I I I I " -

-120
-

-350 -300 -250 -200 -150 -100 -50 0 50 100 150
Orbit Angle in Degrees

Figure 11. Yaw, Roll and Pitch Angles During TAME Maneuver

180
ALTIMETER ANGLE WITH NEGATIVE 2 AXIS

I
I

In
I I , I

& 179.8
a,

-
- 179.6

U

-

s
CY

2 179.4
n

-
179.2 -

W ' 179-

-
-

2
178.8 I I I I

-250 -200 -1 50 -1 00 -50 0 50
ORBIT ANGLE (degrees)

140

120 - Star Trkr 1 a
Star Trkr 2a
Constraint Limit

Star Tracker Angle wrt Sun
I I I I I

v1
_"

g 100 -
P

80 -
a,
D)
-
2 6 0 - -

40

20

-

-250 -200 -1 50 -100 -50 0 50

/
/ -

Orbit Angle, degrees

Figure 12. Star Tracker S u n Angles During TAME Maneuver

22

21 GHZ CHASSIS TEMPERATURE
- .

0 -22

- 2 2 0
F

-

2

: 1 8 -
I m
Q

1 6 -
s

I I I I I

-250 -200 -1 50 -1 00 -50 0
14

ORBIT ANGLE (degrees)

FLUXES ON POSITIVE Y TMR RADIATOR

50

1400 I I I I

-250 -200 -1 50 -1 00 -50 0 50
ORBIT ANGLE (degrees)

Figure 13. Primary Thermal Constraint During TAME Maneuver

23

STATE of CHARGE

0.98 -

0.96 -

0.94 I
-300 -200 -100 0 100

S U N - S O B ~ @ e g r e e s)

50 ' I
-300 -200 -100 0 100

2ooo
~IS irc l l3N1Eq4WN

ECLIPSE

0.5

0 -

-

-0.51 -1 -300 -200 -100
0 100

s m A w t a e u E c @ ~ p s
400 r

n l U
-500 -200 -100 0 100

ORBIT ANGLE (degrees)

0 T
-300 -200 -100 0 100

ORBIT ANGLE (degrees)

Figure 14. Battery State of Charge During TAME Maneuver

CONCLUSIONS

The feasibility for autonomous propulsive maneuver planning sequence generation was
demonstrated in 1994. The 1995 effort generalized the algorithms allowing arbitrary Euler turns in
place of the single axis turns and the code is being written to comply with flight software code re-
quirements. The TOPEX Autonomous Maneuver Experiment (TAME) applies these concepts to a
real operational nadir pointed orbiter.

The challenge of the TAME experiment will not be limited to the maneuver planner algo-
rithm. Real mission constraints and oversights would have to be considered for their full impact to
ensure a safe experiment.

ACKNOWLEDGMENTS

The research described in this paper was performed by the Jet Propulsion Laboratory,
California Institute of Technology, under contract with the National Aeronautics and Space Ad-
ministration.

24

REFERENCES

1 Aljabri, A. S., Kia, T., and Lai, J. Y., ”Highly-Autonomous Event-Driven Spacecraft Control,” IAA
International Conference on Low-Cost Planetary Missions, Maryland, April 1994.

2 T. Kia, A. Aljabri, R. Goddard, T. Munson, G. Kissel, H. Lin, P. Vaze, “TOPEX/POSEIDON
Autonomous Maneuver Experiment (TAME),” 19th Annual A A S Guidance and Control Confer-
ence, February 7-1 1, 1996 Breckenridge, CO.

3 T. Kia, J. Mellstrom, A. Klumpp, T. Munson & P. Vaze, “TOPEX/POSEIDON Autonomous
Maneuver Experiment (TAME) Design and Implementation,” 20th Annual A A S Guidance and Con-
trol Conference, February 5-9, 1997 Breckenridge, CO.
4 Dennehy, C. J., Ha, K., Welch, R. and Kia, T. “On-board Attitude Determination for the TOPEX
Satellite,” AIAA Guidance, Navigation and Control Conference, Boston, MA, August 1989.

5 Bhat, R. S., Frauenhlz, R. B. and Canneli, P. E. “TOPEX/POSEIDON Orbit Maintenance Ma-
neuver Design,” AAS/AIAA Astrodynamics Specialist Conference, Stowe, Vermont, August 1989.

25

MATERIAL NOT INCLUDED IN PAPER

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Do:

Remove references to the epemeris.

Redraw Figure 1 because it says getting tank temperature instead of pressure, and other
things? It doesn't seem to fit the associated text.

Redraw Figure 2, including removing references to the ephemeris, and fixing other items.

Redraw Figure "TAME Search Algorithm", fixing Ta and making other corrections shown
in blue book.

Correct any uses of t h e term "constraint" that actually mean "constraint violation"

Remove all paragraphs of style Normal.

Restore left-right orientation of Maneuver-Profile- and TAME-Search figures.

Write section on risk mitigation.

Finish fixing figures, and their citations.

Make text uniform in font.

Make text uniform in columns

Done Space fix

Spell check

Search for <?>

Items wrong with figure 1 :

Fixed. It's not a thruster module but a propulsion module.

Fixed. It's not the GPS computer but the 1750A computer.

Fixed. It's not a command file but a maneuver sequence.

Yes. Has OBC been introduced? Is it the "TOPEX OBC" or just the OBC?

Fixed. We don't actually consider a solar ephemeris, and BetaPrime is only input from
S/C ephemeris. And BetaPrime comes from ground, not internally.

Fixed. S/C initial state does not come from OBC.

0

Items wrong with figure 2:

Planner control doesn't exist.

26

ERROR: syntaxerror
OFFENDING COMMAND: --nostringVal--

STACK :

-mark -
5

